If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+82t=0
a = -16; b = 82; c = 0;
Δ = b2-4ac
Δ = 822-4·(-16)·0
Δ = 6724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6724}=82$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(82)-82}{2*-16}=\frac{-164}{-32} =5+1/8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(82)+82}{2*-16}=\frac{0}{-32} =0 $
| 9n-65=2(5-3n) | | 2m2+5m+3=0 | | 5/3=2/2x | | Y=3x+7=21-4x | | 243(x+3)=81(x2) | | 4c+50=150 | | +6x=41 | | 6x2.68=16.08 | | (x–6)(180/x+1)=180 | | 5x-12=1x-4 | | 1404=10(p+27) | | 2x=16–2x | | 6x=2.68 | | 5x+9x+11x-5=180 | | 10x+2=10x+19 | | p+10=17 | | 3^q=81 | | 6n=34 | | -20=-1x+2 | | 6=x2.68 | | -20=1+7x+2 | | 16x+24=8(2x3) | | |m+7|=18 | | Y=3x+7+21-4x | | 7v=5v=24 | | -12x+17=-41 | | (x-5)2+8=17 | | 4x-14=3x-7 | | 2xx5=120 | | t=48+10t=180 | | -7(6x+4)=-154 | | -13+6b+7-2b=1+5b |